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Abstract— Methods for processing parametric broadband 
sonar returns are presented with the goal of locating buried 
objects from clutter. A gain correction algorithm based on 
wavelets is employed to correct for frequency dependent signal 
losses in multiple frequency bands. Quadratic detectors are de- 
signed to filter in time, frequency, and spatial domains simul- 
taneously. These normalized quadratic detectors are shown 
to successfully isolate regions with similar characteristics by 
exploiting spectral and temporal features in both horizontal 
and vertical directions. Several examples are presented using 
data collected at field trials. One open field test was per- 
formed by Naval Research Laboratory (NRL) researchers in 
the Puget Sound. This data set is shown to contain many 
non-homogeneous sediment and gas layers. Other data sets 
were collected by NRL researchers in an experimentally con- 
trolled, sand filled test tank located at the Lake Travis facility 
of the Applied Research Laboratory at the University of Texas 
at Austin. The latter data set presents some of the difficulties 
with successfully identifying buried objects in sandy regions. 

Keywords— Wavelet, quadratic detector, parametric, 
broadband sonar. 

I. INTRODUCTION 

THERE has been increasing activity in the ocean 
drilling and exploration, as well as, the place- 

ment of transoceanic internet communication lines. 
These activities have have spawned a tremendous 
need to be able to locate existing burial and drilling 
sites and distinguish buried objects from naturally 
existing imagery. This paper presents the successful 
application of a wavelet-based gain correction and 
quadratic detectors to parametric, broadband sonar 
data to detect and identify buried objects. 

Currently, the majority of methods used to solve 
the problem of sub-bottom object detection are fo- 
cused on the reflection magnitude using approaches 
similar to seismic surveying. Accurate identification 
in regions containing large amounts of clutter is ex- 
tremely difficult using these approaches. 

New, exciting opportunities now exist because of 
advancements in receiver and transmitter technol- 
ogy. Parametric, broadband sonar combines the fre- 
quency sensitivity of broadband systems with the 
characteristic narrow beam signal produced by para- 

metric systems. This system proves invaluable in sur- 
veying and characterizing the ocean floor. The data 
collected can be used to describe countless quali- 
ties of the surveyed area. These characteristics in- 
clude porosity of sediment layers, grain size of the 
sediment layers, bottom contour, natural biological 
influence (decaying sea shells), and unnatural bio- 
logical influence (sunken ships or garbage). When 
analyzing these high-resolution data sets, acoustic 
impedance layers and transient signals are detected. 
This parametric broadband acoustic response pro- 
vides valuable spectral information and temporal res- 
olution that would be lost otherwise [1]. 

New considerations must be made when using 
broadband sonar. Traditional narrow-band sonar sys- 
tems consider signal attenuation to be a function of 
time and sediment type only. The main complexity 
of broadband sonar is that attenuation is a function 
of both frequency and time as well as sediment type. 
To correct for these signal losses, wavelet analysis is 
applied to selectively determine gain correction for 
attenuation in specific frequency bands. 

Stacked parametric, broadband sonar signals pro- 
vide high resolution imagery in time, frequency, and 
spatial domains. Quadratic filters are created to si- 
multaneously exploit the time, frequency, and spatial 
characteristics of specified burial regions. These fil- 
ters are successfully shown to identify areas of similar 
composition and to discriminate dissimilar regions. 

II. STATEMENT OF PROBLEM 

Two main problems are associated with subbot- 
tom object detection using parametric broadband 
sonar. The first problem is that signal losses due 
to attenuation and beam spreading vary in time and 
frequency for a particular sediment. These losses 
must be corrected before continuing to the detec- 
tion stage. If these losses are not corrected, then 
objects buried deeper will not appear the same as 
objects buried near the surface and therefore will not 
be detected.   Wavelet analysis is employed to aid 
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in this correction process. The second problem re- 
sides in deciphering real objects from clutter. Filters 
must be designed to exploit the similarities, if any 
exist, between regions of similar composition. Work 
by Kalcic [2] suggests unique spectral characteristics 
exist for similar regions. Other characteristics to be 
used exist in the shape and in the resonance pat- 
terns of objects. Quadratic detectors are developed 
to compare similarities in spectral, time, and spatial 
domains of a known test region to an unknown sam- 
ple. Levels of correlation are then determined and a 
threshold is used to remove dissimilar regions from 
similar ones. This results in the successful identifi- 

cation of objects. 

III. DESCRIPTION OF DATA 

Numerous experimental data sets were acquired 
by Naval Research Laboratory Stennis Space Cen- 
ter (NRLSSC). All data sets contain digitally sam- 
pled signal returns from parametric broadband sonar 
pings along a track line. One data set presented in 
this paper was obtained from an open sea trial in the 
Puget Sound. This set contains three objects, mud, 
silt and methane gas layers, and a large amount of 
natural clutter. The second data set was collected in 
a series of experiments performed by NRL researchers 
in an experimentally controlled test tank located at 
the Lake Travis facility of the Applied Research Lab- 
oratory at the University of Texas at Austin. This set 
contain 3 objects, 2 of which are buried completely in 
sand while the remaining object is suspended above 
the sand in the water column. The surface reflection 
of sand and the signal attenuation in multiple bands 
makes this set quite interesting. 

The data sets in this paper were collected dur- 
ing field tests of the Tri-Parametric Focusing And 
Location (TRIFOCAL) project. In the TRIFOCAL 
system, a NUWC P002-hybrid parametric trans- 
ducer/conventional receiver was used [3]. The two 
primary frequencies produced by the transducer were 
183 kHz and 238 kHz respectively. Together the two 
frequencies mixed non-linearly in the water column 
yielding a 55 kHz difference frequency. This funda- 
mental frequency was transmitted into the sediment 
and then received by the hybrid transducer/receiver. 

The block diagram of how a parametric system 

works is given in figure 1. 
The benefit of the parametric signal is that the 

lower frequency beam produced has the narrow 
beamwidth of the higher frequency primaries and 
negligible sidelobes. The beam produced by the 
P002-hybrid system has approximately a 1.1 degree 
angle of spread. This is ideal for sub-bottom object 
detection. In order to successfully locate and identify 
objects, pings need to be collected with close prox- 
imity to each other and little overlap due to spread- 

ing. The narrow-beam characteristics of this system 
provide the information needed for accurate edge de- 
tection of buried objects. In turn, this enables dis- 
crimination of different regions based on temporal 

characteristics. 
Figure 2 portrays an unprocessed data set recorded 

on site in Puget Sound. In this figure, the most 
significant features of the image are the strong re- 
flections of shells near the surface, the methane gas 
layer located deeper in the sample, the buried object 
as well as the two phantom returns resulting from 

beam splitting. 
Figure 2 contains strong reflections from many ob- 

jects referred to as clutter. In order to identify buried 
objects successfully, clearly, a time-frequency-varying 
gain must be applied to compensate for signal losses 
at increasing depths and frequencies, and filters must 
be designed to discriminate man-made objects from 

clutter. 
Experimentally controlled tests were collected at 

the Lake Travis test site. These tests were performed 
in a 24' x 10' x 4' deep test tank containing three 
objects, one suspended in the water column and two 
buried in sand. Figure 3 depicts the tank with one 
suspended object, the sand surface, one prominent 
buried object, one unidentified buried object, and 
two seemingly invisible hydrophones. 

To prevent errors while estimating signal losses, 
the Lake Travis data set must be cropped to remove 
the known areas of reverberation as well as the sus- 

pended object. 

IV. SOLUTION 

When analyzing this data, band pass filtering is 
implemented to study the contributions of different 
frequency bands in the image. These results sug- 
gest that unique spectral signatures exist for regions 
of differing composition. Previous work performed 
by Kalcic also supports this phenomenon. This ten- 
dency coupled with the notion all frequency bands 
do not attenuate at the same rate in all mediums 
creates an ideal situation for using wavelet analysis 
to correct for losses due to attenuation and spread- 
ing. Quadratic filters also possess ideal properties to 
exploit desired unique spectral signatures of objects. 

There is a noteworthy problem concerning the idea 
of unique spectral signatures. The reflection of a 
buried object is not solely a function of that object's 
material composition. The reflection is actually a 
composite response of all the spectral responses of 
the many materials in which the object is buried. For 
example, when a metallic cylinder appears in sand, 
the reflection is not solely a function of the metal, 
but of the reflection modified by the sand and water. 
Quadratic detectors provide a method for removing 
the background plus noise response not associated 
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Fig. 1.   Block diagram representing the TRIFOCAL P002-hybrid transducer/receiver used in data collection. 

uniquely with the desired object plus noise response. 
This method assumes that regions of object are sim- 
ilar enough to allow for detection. 

The procedure for object detection is divided into 
two sub-sections. The first sub-section is related to 
gain correction, and the second is to object discrim- 

ination. 
The general process is shown in the block diagram 

represented in Figure 4. 

A.  Gain Correction 

The first question to be answered when correct- 
ing for losses is whether the losses are stationary. 
The method discussed here assumes non-stationarity 
in attenuation, and furthermore assumes that losses 
may be more accurately represented as a function 
of time and frequency. A simplistic exponential 
model for this frequency-varying attenuation is in- 
corporated into the gain correction procedure. This 
simple model shows great promise, opening the door 
to more robust attenuation models. 

Mathematically the gain correction process can 
be represented quite compactly using the following 

equation: 

V = D'GDx (1) 

where 
x is the raw data column vector representing one 

ping return, 
D is  an   orthogonal   Discrete  Wavelet  Transform 
function where D' = D_1, 
G is  a  diagonal   Time-Frequency  gain  correction 

function, and 
y is the corrected data column vector representing 

one corrected ping return. 

The frequency range sensitivity of the TRIFOCAL 
receiver is 30 kHz to 80 kHz. The power spectral 
density of the raw data does not reflect the same 
sensitivity levels, meaning system noise must be re- 
moved. To remove noise outside the sensitive fre- 
quency band, the data is band pass filtered. The 
sampling frequency of the system is 390.625 kHz, so 
80 kHz is well below the critical sampling frequency 
determined by the Nyquist criterion of 195 kHz. This 
oversampling permits the data set to be decimated 
by a factor of 2 without losing any information. 

As with all decisions, trade-offs exist when choos- 
ing which set of wavelet coefficients to use. Higher 
order wavelet coefficients provide more frequency 
resolution, but less temporal resolution. Since tem- 
poral characteristics are vital in the detection pro- 
cess, a set of coefficients must be chosen to preserve 
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Fig. 2.    Non-corrected data set resolving methane gas, buried cable, and shells. 

spatial resolution. In this method, the Daubechies- 
4 wavelet coefficients are selected for their overall 
robustness and applied to each column of the data 
set. The 2-D wavelet transform may also be used, 
but 1-D coefficients are selected for their simplicity 
in mapping to their appropriate time-frequency loca- 
tions in the original data ping. 

The data is padded with zeros to prevent edge 
effects commonly associated with wavelet analysis. 
Correctly mapping wavelet coefficients can be diffi- 
cult. Padding the original data with zeros to the next 
length with power of 2 aids in making this task less 
tedious. Coefficients corresponding to the different 
frequency bands are then fed into an algorithm which 
determines the average rate of attenuation for a set 
of columns. This average over a set of columns pre- 
vents the attenuation rates being biased by highly- 
reflective objects in the sediment column. 

Figure 5 shows the first decimation wavelet coef- 
ficients which are passed to the attenuation subrou- 
tine.   These are the coefficients which are mapped 

to the frequency band ranging between half the new 
critical sampling rate to the new critical sampling 
rate (48.8 kHz - 97.7 kHz), objects 1-3 are still easily 
distinguishable from the other existing imagery. The 
number of points in this figure is half of the original 
number of points. As the level of decompositions 
increases, the spatial resolution and corresponding 
bandwidth is decimated by an increasing factor of 2. 

Figure 6 shows the resulting image after apply- 
ing this multi-spectral gain correction. This image 
clearly depicts to what extent the methane layer truly 
reflects and dominates the image. The three objects 
are still distinguishable by eye, but the methane layer 
produces numerous false-positive errors. 

Figures 7 and 8 show before and after representa- 
tions of the Lake Travis data set respectively after 
cropping out the suspended object and areas of re- 
verberation. The non-gain corrected data set clearly 
shows one object, but after applying gain correction, 
two objects and a hydrophone are readily distinguish- 
able by eye. 
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Fig. '.i.   Non-corrected data sot from Lake Travis trial containing one suspended object, two buried objects, and two hydrophones 
buried in a -4 foot deep test, tank filled with sand. 

13.  Autocorrelation and flu: Quadratic Detector 

The first step in discrimination is to determine the 
unique characteristics of specific objects. As stated 
earlier Kalcic shows that unique spectral character- 
istics exist for each object region using band pass 
filtering to examine multiple frequency bands [2]. 

The next step is to determine if regions of sim- 
ilar composition can be identified. Initially, auto- 
regressive models are used to create stationary filters 
representing each specified region. Results of mod- 
eling demonstrate that spectral and temporal differ- 
ences exist between regions of differing composition. 
This suggests the use of a quadratic detector as a 
more rigorous approach. 

The autocorrelation of a data stream and its au- 
toregressive (AR) model are roughly inverse ana- 
logues between time-variant and time-invariant sig- 
nals. The AR model may be applied as a whitening 
filter to the time-invariant signals. Similarly the in- 
verse of the autocorrelation matrix may be applied 

to the time-varying signal as a whitening filter. The 
actual relationship is defined in (2). 

R- (2) 

where 
A2 is the AR whitening filter of a sample column 
vector, and 
R~l  is the autocorrelation of the same sample col- 
umn vector. 

Different filters are constructed for each region of 
specific make-up and tested against each sample col- 
umn vector using a maximum likelihood ratio. A 
sample column vector is first whitened with a filter 
from one of the specified regions and then is sub- 
tracted from the same vector whitened by its own 
autocorrelation filter. Regions similar in composi- 
tion to the selected test region exhibit a difference 
near zero. If the region is different in composition 
than the selected test region, then the difference is 
larger in magnitude. 



Kig. 4.   Block diagram depicting the order of processing. 

This hypothesis is represented mathematically in 
the following equations: 

H0:y~N(Q,R0) 

lh :y~N(0,A,) 
The quadratic detector test statistic is 

L(y) = y'(Rü1-R;')y (3) 

This statistic is tested to threshold, A. 

Ho ■ L(V) < A 
Hi ■ L(y) > A 
If Ho is true, then the two regions are similar in 

composition. If Hi is true, then the two regions are 
not similar. 

where 

y is a gain corrected data column segment from 1, 
i?<j is the autocorrelation of y with unknown com- 
position, 

Ry  is the autocorrelation of y with known composi- 
tion, 

L(y) is a quadratic detector, and 
A is a set threshold representing the probability that 
2/o is similar to y\ in composition. 

The quadratic filter is essentially a measurement 
of the power in a signal. 

y'R-ly=(y'y/R^)(^R^y) (4) 

where 

VR~]   is a whitening filter with respect to y. 
This filter is applied to the y vector. This process 

determines the energy in the original vector sam- 
ple. Then the energy associated with the object 
is removed from the energy in the sample. There- 
fore, if the region being tested contains energy well- 
correlated to the object region, this energy is re- 
moved leaving almost no signal in this region. Not- 
ing that areas of high correlation have been reduced 
to low energy and areas of low correlation are still 
relatively large in magnitude, a logarithmic represen- 
tation of the new image is used to identify areas of 
similar composition. 

One main inherent difficulty exists in this type of 
detection that must be corrected. If gain coefficients 
are changed in the gain correction process, the dif- 
ference between two regions does not increase by a 
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FIR. 5.    First decimation coefficients of wavelet, transform on Puget Sound Data 

multiple of that amount. In truth, the difference be- 
tween the two statistics is increased by the square of 
the initial change in gain. To correct for this, the 
signal energy must be normalized. This is done sim- 
ply by dividing each statistic by the energy in the 
original signal: 

y'R^y-y'R^'y 

yy 
(5) 

A second lesser inherent problem in this tech- 
nique is related to the measurable differences be- 
tween background and noise statistics. This tech- 
nique assumes that one object has the same spec- 
tral components as similar objects. This is a prob- 
lem, as stated before, the reflection is not solely a 
function of the one material involved. The reflec- 
tion is a composite of the spectral characteristics of 
the many materials that surround the object and the 
object itself. Since each object is suspended in a non- 
homogeneous mixture of sediments, each measured 

object signature will differ slightly. If the two object 
signatures are well correlated, then this process can 
be employed successfully. This procedure has been 
shown to work in regions of controlled homogeneity 
as well as in an open field test with non-homogeneous 
sediments. 

The Lake Travis data set filtered both vertically 
and horizontally shows high correlation between ob- 
ject areas. Two hydrophones and all objects are 
clearly distinguishable in Fig. 9 after horizontal filter- 
ing only. One phantom object is also readily distin- 
guishable in the image. This object is most likely the 
result of multipath reverberation. Figure 10 clearly 
shows the location of both objects after being fil- 
tered vertically also. Quadratic filtering of the Puget 
Sound data not only successfully located all three 
objects, but also performed excellently in detecting 
the bottom. Figure 11 is the result of filtering the 
Puget Sound data horizontally for metallic cylinders. 
Three objects are clearly distinguishable by eye.   A 
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FIR. 6.    Gain corrected Pngct Sound data set containing most notably three objects and a strong layer of methane. 

region of extreme low correlation near the surface of 
the bottom represents the true surface of the ocean 
floor. Figure 12 identifies all three object regions 
after being filtered both horizontally and vertically. 
Numerous false-positive errors are visible in this fig- 
ure. In order to remove some of the false-positive 
errors caused by methane and other natural clutter, 
longer horizontal samples can be selected so that 
regions of object significantly differ from regions of 
methane 

V. CONCLUSIONS 

In summary, parametric, broadband sonar data 
contains a wealth of information that can be ap- 
plied to object detection in oceanic sub-bottom re- 
gions. Wavelets aid in correcting for signal losses due 
to frequency and time-variant attenuation in multi- 
ple frequency bands. Quadratic filters and shown 
to isolate spectral, time, and spatial characteristics 
of user-specified object regions.   This process may 

be applied to multiple data sets and works in both 
experimentally controlled conditions and open field 
tests. Furthermore, quadratic detectors show great 
promise in bottom detection and contouring. 

Future work is planned to heterodyne the raw data 
to allow for more frequency specific bands as well 
as to reduce the amount of data being processed. 
Applying a best-basis wavelet decomposition can be 
used to accentuate specific frequency bands asso- 
ciated with the specified buried object. More ro- 
bust models for attenuation can be implemented to 
enhance gain correction. Overall, this process has 
shown great results as well as great promise in the 
field of object detection. 
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Fig. 7.   Non-gain corrected Lake Travis data set. containing one prominent object. 
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Fig. 8.   Gain corrected Lake Travis data set, containing most notable two objects and one hydrophone. 
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Fig. 9.    Horizontally filtered Lake Travis data set, clearly indicating locations of two objects, two hydrophones, one phantom 
object, and a false positive caused by surface reflection. 
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Kig. 10.    Vertically and horizontally filtered Lake Travis data set clearly indicating locations of two objects 
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Fig. 11.    Horizontally filtered Puget Sound data set clearly indicating locations of three possible objects and true location of 
the bottom surface. 
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Fig. 12.   Vertically and Horizontally filtered Pugct Sound data set indicating locations of three possible objects and false-positive 
locations caused by methane redections as well as other natural imagery. 
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